11.3C: Separation Theory (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    483299
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Although steam distillation appears almost identical to "regular" distillation, the principles behind the separation of components are quite different. In a "regular" distillation, separation is attempted on a mixture of components that dissolve in one another. The vapor produced from these mixtures can be described by a combination of Raoult's law and Dalton's law, as shown in Equation \ref{14} for a two-component mixture.

    \[\text{Miscible components:} \: \: \: \: \: P_\text{solution} =P_A + P_B = P_A^o \chi_A + P_B^o \chi_B \label{14}\]

    When the components in the distilling flask do not dissolve in one another, such as when water and nonpolar organic compounds are present, the vapor produced from these mixtures is different. The components act independently from one another (which makes sense considering they do not mix), and the partial pressure from each component is no longer determined by its mole fraction. The partial pressure of each component is simply its vapor pressure, and the vapor composition for a two-component mixture is described by Equation \ref{15}. Although the components do not mix in the liquid phase, they do in the gas phase, which allows for co-distillation of "incompatible components".

    \[\text{Immiscible components:} \: \: \: \: \: P_\text{solution} = P_A^o + P_B^o \label{15}\]

    The implications of Equation \ref{15} are several. First, since mole fraction is not a factor, it is possible that a minor component in the distilling flask can be a major component in the distillate if it has an appreciable vapor pressure. In the steam distillation of volatile plant materials, this means that the distillate composition is independent of the quantity of water or steam used in the distilling flask.

    Secondly, since the vapor pressures of each component add, the mixture will always boil at a lower temperature than the boiling point of the lowest boiling component. For example, at \(100^\text{o} \text{C}\) water has a vapor pressure of \(760 \: \text{torr}\) since it is at its normal boiling point. If another volatile, non-water-soluble component was present with the water in a distilling flask at \(100^\text{o} \text{C}\) (for example toluene, which has a boiling point of \(111^\text{o} \text{C}\)), it too would produce vapors that contributed to the total pressure. As boiling occurs when the combined pressure matches the atmospheric pressure (let's say \(760 \: \text{torr}\) for the sake of this calculation), boiling would occur below \(100^\text{o} \text{C}\). For example, a mixture of toluene and water boils at \(85^\text{o} \text{C}\), as shown in Equation (16).

    \[\text{Water/toluene mix at } 85^\text{o} \text{C}: \: \: \: \: \: \begin{align} P_\text{solution} &= P_\text{water}^o + P_\text{toluene}^o \\ &= \left( 434 \: \text{torr} \right) + \left( 326 \: \text{torr} \right) = 760 \: \text{torr} \end{align} \label{16}\]

    The distilling temperature in steam distillation is always below \(100^\text{o} \text{C}\) (the boiling point of water), although in many cases the distilling temperature is very near or just under \(100^\text{o} \text{C}\). This feature allows for plant essential oils (complex mixtures that often include components with very high boiling points, \(> 250^\text{o} \text{C}\)), to be extracted at lower temperatures than their normal boiling points, and thus without decomposition.

    11.3C: Separation Theory (2024)
    Top Articles
    Man admits to double murder, assault in Town of Tonawanda - Buffalo news - NewsLocker
    Bisons catcher released from hospital after being hit by bat on follow-through - Buffalo news - NewsLocker
    Wmaz 13
    Randolf Spellshine
    monroe, LA housing - craigslist
    Jared Isaacman e Sarah Gillis: quem são os primeiros civis a caminhar no espaço
    Badddae
    5417873087
    Franklin City School District - Ohio
    Espn Masters Leaderboard
    What's the Difference Between Halal and Haram Meat & Food?
    Craigslist Hutchinson Ks
    Robertos Pizza Penbrook
    Nccer Log In
    Pachuvum Athbutha Vilakkum Movie Download Telegram Link
    Members Mark Ham Cooking Instructions Recipes with ingredients,nutritions,instructions and related recipes
    10 Teacher Tips to Encourage Self-Awareness in Teens | EVERFI
    Kristine Leahy Spouse
    Bx11
    Python Regex Space
    10-Day Weather Forecast for New Jersey - The Weather Channel | weather.com
    Mercedes E-Klasse Rembekrachtigers voorraad | Onderdelenlijn.nl
    Community Q&A with Red Flight and the Combat Box server
    4201 Crossroads Wy, Rancho Cordova, CA 95742 - MLS 224103058 - Coldwell Banker
    Roxplayhouse
    Footfetish Telegram
    Does Wanda Sykes Use A Cane
    Huadu Cn Fedex
    Craigslist Cars Los Angeles
    St Cloud Rants And Raves
    Cece Rose Facial
    Dumb Money Showtimes Near Maya Cinemas Salinas
    Riverry Studio
    Mellow Mushroom Nutrition Facts: What to Order & Avoid
    After the Yankees' latest walk-off win, ranking which starters might be headed to the bullpen
    Minor League Baseball Leaders
    Roe V. Wade: The Abortion Rights Controversy in American History?second Edition, Revised and Expanded (Landmark Law Cases and American Society) - Taylor, Bob: 9780700617548
    Black Myth Wukong All Secrets in Chapter 6
    Jodie Sweetin Breast Reduction
    Kcu Sdn
    In Memoriam | September 2024
    Limestone Bank Hillview
    Sam's Club Gas Price Mechanicsburg Pa
    Delta Incoming Flights Msp
    John Deere 7 Iron Deck Parts Diagram
    Scotlynd Ryan Birth Chart
    Leo 2023 Showtimes Near Amc Merchants Crossing 16
    Lesson 8 Skills Practice Solve Two-Step Inequalities Answer Key
    Intoxalock Calibration Locations Near Me
    Jailfunds Send Message
    Vox Machina Wiki
    Latest Posts
    Article information

    Author: Stevie Stamm

    Last Updated:

    Views: 5878

    Rating: 5 / 5 (80 voted)

    Reviews: 95% of readers found this page helpful

    Author information

    Name: Stevie Stamm

    Birthday: 1996-06-22

    Address: Apt. 419 4200 Sipes Estate, East Delmerview, WY 05617

    Phone: +342332224300

    Job: Future Advertising Analyst

    Hobby: Leather crafting, Puzzles, Leather crafting, scrapbook, Urban exploration, Cabaret, Skateboarding

    Introduction: My name is Stevie Stamm, I am a colorful, sparkling, splendid, vast, open, hilarious, tender person who loves writing and wants to share my knowledge and understanding with you.